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Abstract
New non Hermitian Hamiltonians are generated, as isospectral partners of
the generalized Swanson model, viz., H− = A†A + αA2 + βA†2, where α, β

are real constants, with α �= β, and A† and A are generalized creation and
annihilation operators. It is shown that the initial Hamiltonian H−, and its
partner H+, are related by pseudo supersymmetry, and they share all the eigen
energies except for the ground state. This pseudo supersymmetric extension
enlarges the class of non Hermitian Hamiltonians H±, related to their respective
Hermitian counterparts h±, through the same similarity transformation operator
ρ : H± = ρ−1h±ρ. The formalism is applied to the entire class of shape-
invariant models.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ge

1. Introduction

Ever since interest in non Hermitian Hamiltonians (with real energies) was revived about a
decade ago by Bender and Boettcher [1], quantum systems described by such non Hermitian
Hamiltonians have been studied widely [2]. To extend the class of such systems, new
exactly solvable (or quasi-exactly solvable) non Hermitian Hamiltonians with real, discrete
energies, have been generated using different approaches—e.g., supersymmetry [3], the related
intertwining operator method [4], or the Darboux algorithm [5]. In a recent work [6], we
had found a class of new non Hermitian models by generalizing the Swanson Hamiltonian
H = a†a + αa2 + βa†2 where α, β are real constants, with α �= β. This model was
initially proposed by Swanson [7], and later on studied by various authors [8]. For the
sake of generalization, we had used generalized creation and annihilation operators, A†

and A, in place of Harmonic oscillator creation and annihilation operators a†, a, so that
H− = A†A + αA2 + βA†2. The energies of this class of non Hermitian Hamiltonians were
found to be real when the parameters satisfy the relations (α + β) < 1 and 4αβ < 1 [6, 7].
In the present work, we shall generate new non Hermitian Hamiltonians H+, as isospectral
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partners of the generalized Swanson Hamiltonian H−. It may be recalled that non Hermiticity
may be introduced through a scalar term or by a vector term. In the scalar case non Hermiticity
may be introduced by replacing x with (x ± iε) or by taking one of the parameters complex
in the expression for the potential V (x). Though this looks apparently simple, nevertheless, a
similarity transformation of the non Hermitian Hamiltonian (H± with solutions ψ(±)) maps it
to a complicated non-local Hermitian Hamiltonian (h± with solutions φ(±)). Consequently, the
resulting Hermitian Hamiltonian is not exactly solvable and perturbative techniques may have
to be applied for solving the same. Additionally, it may not be possible to determine the exact
form of the metric operator η explicitly, with respect to which the inner product 〈ψm|η|ψn〉
is positive definite. On the contrary, if non Hermiticity is introduced through an imaginary
vector potential, the similarity transformation yields a Hermitian Schrödinger Hamiltonian
(consisting of the standard kinetic term plus a local Hermitian potential term), with possibilities
of exact (or quasi-exact) solvability. The metric operator also can be obtained in closed form.
In view of the fact that a gauge-like transformation transforms the non Hermitian Hamiltonian
H− to a Hermitian one h− with Schrödinger form, the imaginary vector potential may be
regarded as a trivial way of introducing non Hermiticity. Nevertheless, since the resulting
Hamiltonian H− comes out to be real yet non Hermitian, with real spectrum and possibilities
of exact (or quasi-exact) solutions, our interest here is to look for isospectral partners of such
a potential.

A couple of recent works deserve special mention here [9, 10]. In the first of these [9], a
method was proposed to generate a family of non Hermitian Hamiltonians equivalent to the
Swanson Hamiltonian [7], by writing H as a linear combination of su(1, 1) generators K0,K±;
i.e. H = 2K0 + 2αK− + 2βK+. In the second work [10], a quasi-Hermitian supersymmetric
extension was proposed for a Harmonic Oscillator Hamiltonian, augmented by a non Hermitian
PT symmetric part. To construct new non Hermitian Hamiltonians related by similarity
transformation to Hermitian ones [11, 12], the su(1, 1) Lie algebra needs to be enlarged to
a su(1, 1/1) ∼ osp(2/2, R) Lie super algebra. Incidentally, both in [10] and our present
formulation, non Hermiticity is introduced not by considering a complex-valued potential, but
through a momentum-dependent interaction term. However, our approach is different from
either of those employed in [9, 10]. Instead of the Swanson model considered in [9, 10], we
deal with its generalized version [6]. So while the non Hermiticity is introduced through a
momentum-dependent linear interaction term in [10], viz., i (α − β) (xp + px); in our case
it is not necessarily linear, to be precise it is of the form i (α − β) {W(x)p + pW(x)}, thus
depending on the particular model considered. Secondly, in our case the Hamiltonian H− is
written in terms of generalized creation and annihilation operators, which are not necessarily
Lie algebra generators.

It is worth recalling here that the choice of the metric operator η is not unique. In fact many
possible such operators exist, obeying the condition ηH− = h

†
−η. So there are many ways

of finding a Hermitian Hamiltonian h−, through a similarity transformation h− = ρH−ρ−1

and thus obtain the metric operator η [13], from the relation η = ρ2 [11]. Each h− is
associated with a different metric, thus invoking a different Hilbert space for each Hermitian
map. Our approach gives a simple, straightforward method to determine one such similarity
transformation ρ mapping the non Hermitian system H− to its Hermitian equivalent h−. In
this respect our approach is different from [10] where the su(1, 1) generators K0,K± are used
in the construction of ρ. Furthermore, the normalization requirement of the wave functions for
pseudo Hermitian systems viz., 〈ψ |η|ψ〉 ensures the wave functions to be naturally normalized
in our formalism, as we shall see later.

Once a non Hermitian partner Hamiltonian H+ of the generalized Swanson Hamiltonian
H− is obtained, it is natural to look for some underlying symmetry between H±. Since our
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starting Hamiltonian is non Hermitian, the partners cannot be expected to be inter-related
through spersymmetry. On the contrary, it is anticipated that they will be related by pseudo
supersymmetry [14]. It will also be shown that the pair of non Hermitian Hamiltonians H±
are related to a pair of Hermitian ones h± through the same similarity transformation ρ.
Finally, we shall apply our formalism to the entire class of shape-invariant potentials, where
the parameters of the partner potential are related to those of the initial one through translation
[15]. It is worth mentioning here that we have been able to give a general expression for finding
the partner Hamiltonian H+ in terms of the parameters of H−, for all the shape-invariant models
related through translation of parameters.

The plan of the work is as follows. In section 2, new non Hermitian Hamiltonians H+ are
generated, which are isospectral to the initial non Hermitian Hamiltonian H−, except for the
ground state. It is observed further that both the initial non Hermitian Hamiltonian H− and
its partner H+ so generated, are pseudo Hermitian with respect to the same linear, invertible
operator η. The underlying symmetry between the partners H± is studied in section 3. The
formalism developed here is actually applied to all the known classes of shape-invariant models
mentioned above, in section 4. Finally, Section 5 is kept for conclusions and discussions.

2. Theory

For a better understanding of the topic and to make the paper self-contained, we repeat certain
equations from [6] in the initial part of this section. To start with we consider the generalized
Swanson model

H− = A†A + αA2 + βA†2, α �= β (1)

where α and β are real, dimensionless constants, with α �= β for H− to be non Hermitian, and
A† and A are generalized creation and annihilation operators, given by

A = d

dx
+ W(x), A† = − d

dx
+ W(x) (2)

Investigations in this field has revealed that for such non Hermitian Hamiltonians to describe
physical systems, they should be necessarily η-pseudo Hermitian [13],

H
†
− = ηH−η−1, i.e. H

†
−η = ηH− (3)

where η is a linear, invertible, Hermitian operator. This requirement, along with the criterion
for the wave functions to be well behaved in the entire range, the parameters must obey certain
conditions [6, 7], viz.,

α + β < 1, 4αβ < 1 (4)

With the explicit form of (2) and some straightforward algebra, the eigenvalue equation

H−ψ(−)(x) = Eψ(−)(x) (5)

can be cast in the form [6]

H−ψ(−) =
{

− (1 − α − β)

(
d

dx
− α − β

1 − α − β
W

)2

+
1 − 4αβ

(1 − α − β)
W 2 − W ′

}
ψ(−)

= Eψ(−) (6)

To reduce equation (6) to the well known Schrödinger form

h−φ(−)(x) =
(

− d2

dx2
+ V−(x)

)
φ(−)(x) = εφ(−)(x) (7)

3
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one has to apply a transformation of the form [16]

ψ(−)(x) = ρ−1φ(−)(x) (8)

where

ρ = e−µ
∫

W(x)dx, with µ = α − β

1 − α − β
, α + β �= 1 (9)

so that comparison between (6) and (7) gives

V−(x) =
(√

1 − 4αβ

1 − α − β
W(x)

)2

− 1

(1 − α − β)
W ′(x)

ε = E

1 − α − β

(10)

Thus, a quantum system described by a pseudo Hermitian Hamiltonian H−, is mapped to an
equivalent system described by its corresponding Hermitian counterpart h−, with the help of
a similarity transformation ρ [6, 11, 12],

h− = ρH−ρ−1 (11)

We, now, take refuge in the formalism of supersymmetric quantum mechanics (SUSYQM)
[3], or the equivalent intertwining operator method [4], to find an isospectral partner of h−.
As is well known, h− can always be written in a factorizable form as a product of a pair of
linear differential operators Ã, Ã†, as

h− = Ã†Ã = − d2

dx2
+ w2 − w′ (12)

apart from some factorization energy ε, where Ã, Ã† and w(x) are given by

Ã = d

dx
+ w(x), Ã† = − d

dx
+ w(x), w(x) = −d ln φ−

0 (x)

dx
(13)

φ−
0 being the ground state eigenfunction of Ã†Ã with energy ε0. Thus V−(x) in (10) can be

identified with (w2 − w′)

V−(x) = w2(x) − w′(x) (14)

With the help of (10), the original eigenvalue equation (6) may be written in a more compact
form as

H−ψ(−)(x) = (1 − α − β)

{
−

(
d

dx
− α − β

1 − α − β
W(x)

)2

+ V−(x)

}
ψ(−)(x) = Eψ(−)(x)

(15)

By the principles of SUSYQM, the hamiltonian h− is isospectral to its partner Hamiltonian
h+ given by

h+ = ÃÃ† = − d2

dx2
+ w2 + w′ (16)

i.e.,

h+φ
(+)(x) =

(
− d2

dx2
+ V+(x)

)
φ(+)(x) = εφ(+)(x) (17)

where

V+(x) = w2(x) + w′(x) (18)

4
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Let us now apply the inverse transformation of that given in (8) to (17) above, i.e.,

φ(+)(x) = ρψ(+)(x) = e−µ
∫

W(x)dxψ(+)(x) (19)

After some straightforward algebra, equation (17) can be written as

H+ψ
(+) = (1 − α − β)

{
−

(
d

dx
− α − β

1 − α − β
W(x)

)2

+ V+(x)

}
ψ(+) = Eψ(+) (20)

Thus, H± are of the same form, except for the explicit form of V±(x). Evidently, both the
initial Hamiltonian H− as well as its partner H+ are non Hermitian. Since h± share identical
energies, except for the ground state, so should H±, with the exception of the ground state.
Thus, applying the principles of SUSYQM, we obtain a non Hermitian partner Hamiltonian
H+ of the initial one H−, sharing identical energies except for the ground state.

2.1. Pseudo Hermiticity of H+

If one considers the inverse transformation (19), then it is easy to check that both the Hermitian
Hamiltonian h± and their non Hermitian counterparts H± are related by the same similarity
transformation as in (11), i.e.,

H± = ρ−1h±ρ (21)

Additionally, simple algebra shows that both the non Hermitian Hamiltonian H± are pseudo
Hermitian with respect to the same pseudo Hermiticity operator η

H
†
± = ηH±η−1 i.e. H

†
±η = ηH± (22)

where ρ and η are inter-related through ρ = √
η [6, 11].

It is interesting to study the behaviour of the wave functions ψ(±)(x). Since H± are η-
pseudo Hermitian, the wave functions should be normalized as 〈ψ(±)|η|ψ(±)〉 [13]. With
η = ρ2 and ψ(±)(x) = ρ−1φ(±)(x), the above normalization condition reduces to the
conventional normalization of Hermitian quantum systems, viz., 〈φ(±)|φ(±)〉, easily available
in standard text books of quantum mechanics for the shape-invariant potentials considered
here [3].

3. Underlying symmetry between the partners H±

To explore the underlying symmetry between the isospectral partners H±, we start with their
Hermitian counterparts h±. Now, h± form a pair of supersymmetric partners, with super
Hamiltonian

h =
(

h− 0
0 h+

)
(23)

and generated by supercharges

q =
(

0 Ã†

0 0

)
, q† =

(
0 0
Ã 0

)
(24)

so that

h = {q†, q} (25)

To establish the symmetry relation between H±, we return to the similarity transformation
between the original non Hermitian Hamiltonian H− and its Hermitian mapping h−, viz.,

H− = ρ−1h−ρ

5
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If one defines two operators D± 1 as

D+ = (
√

1 − α − β)ρ−1Ã†ρ D− = (
√

1 − α − β)ρ−1Ãρ (26)

then the isospectral Hamiltonians, H±, can be written in terms of these operators as

H− = D+D−, H+ = D−D+ (27)

so that D± play the role of intertwining operators for H±
D−H− = H+D−, H−D+ = D+H+ (28)

With the help of (2) and (26), D± can be written in the explicit form

D+ = (
√

1 − α − β)

{
− d

dx
+ µW(x) + w(x)

}

D− = (
√

1 − α − β)

{
d

dx
− µW(x) + w(x)

} (29)

It is worth noting here that the functions W(x) and w(x) appearing in the explicit form of D±
are not independent. Instead, they are related to each other by equations (10) and (14), i.e.

w2(x) − w′(x) =
(√

1 − 4αβ

1 − α − β
W(x)

)2

− 1

(1 − α − β)
W ′(x) (30)

Since the isospectral partner Hamiltonians H± are pseudo Hermitian, we expect them to be
embedded in the framework of pseudo supersymmetry [14]. Straightforward algebra shows
that the operators D± are pseudo-adjoint of one another

(D+)
	 = η−1 (D+)

† η = η−1
(
ρÃρ−1

)
η = ρ−1Ãρ = D− (31)

If we define two operators Q and Q	 as

Q =
(

0 D+

0 0

)
, Q	 = η−1Q†η =

(
0 0

D− 0

)
=

(
0 0

(D+)
	 0

)
(32)

and construct a new Hamiltonian H from the partners H± as

H =
(

H− 0
0 H+

)
(33)

then it is easy to observe that

H = {Q	,Q} (34)

Additionally,

{Q,Q} = {Q	,Q	} = 0 (35)

Thus we obtain the standard pseudo super algebra of non Hermitian supersymmetry [14],
with the operators Q and Q	 playing the role of pseudo super charges, the anticommutator of
which gives the pseudo super Hamiltonian H. Interestingly, though it may not be possible
(in general) to express the new Hamiltonian H+ in terms of the generalized annihilation and
creation operators A and A†, nevertheless, the isospectral partners H± can be shown to be
related by pseudo supersymmetry. Furthermore, it is also observed that the super charges
q, q† of conventional supersymmetry are related to the pseudo supercharges Q,Q	 of pseudo
supersymmetry through

Q = ρ−1qρ (36)

1 In case the operators D± are defined by taking the negative square root of (1 − α − β), then the new operators
Dnew± so formed are related to D± through a constant phase, viz., Dnew± = e±iπD±. This introduces no change in the
expression for H±.

6
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This follows from the similarity mapping between the non Hermitian Hamiltonians H± and
their respective Hermitian counterparts h±. We shall devote the next section to construct
some non Hermitian Hamiltonians as isospectral partners of the generalized Swanson models
based on those shape-invariant potentials where the parameters are related to each other by
translation (a2 = a1 + λ) [3, 15].

4. Models based on shape-invariant potentials

For our formalism to be applicable to specific models, one needs to solve the highly non-trivial
Ricatti equation (30). This demands certain restrictions on the forms of W(x) and w(x). If
one wants to map a certain type of potential (say Harmonic oscillator) to a different type (say
e.g., Pöschl–Teller or Rosen–Morse), while going from the non Hermitian to the Hermitian
picture, the corresponding Ricatti equation cannot be solved analytically (or, at least in an
obvious way). For the shape invariant class, the function w(x) consists of two parts, denoted
by f (x) and g(x), i.e.

w(x) = λ1f (x) + δ1g(x), with λ1, δ1 constants (37)

For reasons given in the beginning of this section, the function W(x) used in the construction
of generalized annihilation and creation operators A and A† in (2) is assumed to be of the
same form as w(x):

W(x) = λ2f (x) + δ2g(x), with λ2, δ2 constants (38)

Our aim is to write V−(x) in terms of w2(x) − w′(x). It is already shown that W(x) and
w(x) are inter-related through (30). Substituting (37) and (38) in (30), the expression takes
the explicit form

1 − 4αβ

(1 − α − β)2

{
λ2

2f
2 + δ2

2g
2 + 2λ2δ2fg

} − 1

1 − α − β
(λ2f

′ + δ2g
′)

= λ2
1f

2 + δ2
1g

2 + 2λ1δ1fg − λ1f
′ − δ1g

′ (39)

This general expression relates the unknown parameters λ1, δ1 in terms of the known ones
λ2, δ2, for all shape invariant potentials where the parameters of the original potential and
its partner are related to each other by translation. This enables one to write the partner
potential V+(x), and hence the partner Hamiltonian H+, in terms of the parameters of the
starting Hamiltonian H−. Now these shape-invariant models can be further classified under
different categories, depending on the particular forms of f (x) and g(x). We shall explore
these in further detail in the next few subsections.

4.1. Case 1: g(x) = constant, f 2(x) = c1f
′(x) + c2, with c1, c2 constants

In this subsection, we shall study the models based on the following potentials:

(1) Rosen–Morse I (trigonometric) potential

V (x) = a(a − 1) csc2 x + 2b cot x − a2 +
b2

a2
, 0 � x � π (40)

with W(x) = −a2 cot x − b2

a2
, a2 > 0, b2 > 0 (41)

7
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(2) Rosen–Morse II (hyperbolic) potential

V (x) = −a(a + 1)sech2x + 2b tanh x + a2 +
b2

a2
, b < a2, −∞ � x � ∞ (42)

with W(x) = a2 tanh x +
b2

a2
, a2 > 0, b2 > 0 (43)

(3) Eckart potential

V (x) = a(a − 1) cosech2 x − 2b coth x + a2 +
b2

a2
, b > a2, 0 � x � ∞ (44)

with W(x) = −a2 coth x +
b2

a2
, a2 > 0, b2 > 0 (45)

For the sake of convenience, we put g(x) = 1. This simplifies (39) to(
λ2

1c1 − λ1
)
f ′(x) + 2λ1δ1f (x) + λ2

1c2 + δ2
1

=
(

(1 − 4αβ)λ2
2c1

(1 − α − β)2
− λ2

1 − α − β)

)
f ′(x) +

2λ2δ2(1 − 4αβ)

(1 − α − β)2
f (x)

+
1 − 4αβ

(1 − α − β)2

(
λ2

2c2 + δ2
2

)
(46)

Equating like terms on both sides, the unknown parameters λ1, δ1 are expressed in terms of
the known ones λ2, δ2 through the following:

λ2
1c1 − λ1 = λ2

2c1(1 − 4αβ)

(1 − α − β)2
− λ2

1 − α − β
(47)

or, more explicitly,

λ1 = 1 ± √
1 + 4σ−

2c1
(48)

where

σ− = λ2
2c1(1 − 4αβ)

(1 − α − β)2
− λ2

1 − α − β
(49)

and

δ1 = λ2δ2

λ1

1 − 4αβ

1 − α − β
(50)

Since λ1 and λ2 should be of the same sign, only the positive sign is allowed in the expression
for λ1 in (48). The pseudo supersymmetric partners H±, expressed as,

H±ψ(±)(x) = E(±)ψ(±)(x) (51)

or, more explicitly,

H±(x) = (1 − α − β)

{
−

(
d

dx
− α − β

1 − α − β
W(x)

)2

+ V±(x)

}
(52)

have identical energies except for the ground state, with V±(x) for this class of potentials
reducing to

V±(x) = (
λ2

1c1 ± λ1
)
f ′(x) + 2λ1δ1f (x) + δ2

1 + c2λ
2
1 (53)

8
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Table 1. The partner potentials V±(x) for the Rosen–Morse I and II, and the Eckart potentials.
ε
(±)
n stands for ε

(±)
n = 1

E
(±)
n

, E
(+)
n = E

(−)
n+1.

Model f (x) W(x) V±(x) ε
(−)
n

Rosen–Morse I −
(

a2
2 − b2

2
a2

2

)
1−4αβ

(1−α−β)2 −
(

a2
2 − b2

2
a2

2

)
1−4αβ

(1−α−β)2

λ2 = −a2 cot x −a2 cot x +a1(a1 ± 1) csc2 x +(a1 + n)2

δ2 = − b2
a2

− b2
a2

+2b2
1−4αβ

(1−α−β)2 cot x − b2
1

(a1+n)2

c1 = c2 = −1 n = 0, 1, 2, . . .

Rosen–Morse II

(
a2

2 +
b2

2
a2

2

)
1−4αβ

(1−α−β)2

(
a2

2 +
b2

2
a2

2

)
1−4αβ

(1−α−β)2

λ2 = a2 tanh x a2 tanh x −a1(a1 ± 1)sech2x −(a1 − n)2

δ2 = b2
a2

+ b2
a2

+2b2
1−4αβ

(1−α−β)2 tanh x − b2
1

(a1−n)2

c1 = −1, c2 = 1 n = 0, 1, 2, . . . < a1

Eckart

(
a2

2 +
b2

2
a2

2

)
1−4αβ

(1−α−β)2

(
a2

2 +
b2

2
a2

2

)
1−4αβ

(1−α−β)2

λ2 = −a2 coth x −a2 coth x +a1(a1 ± 1)csch2x −(a1 + n)2

δ2 = b2
a2

+ b2
a2

−2b2
1−4αβ

(1−α−β)2 coth x − b2
1

(a1+n)2

c1 = −1, c2 = 1 n = 0, 1, 2, . . .

Table 2. The (unnormalized) solutions of the original Hamiltonian H−, for the Rosen–Morse I
and II, and the Eckart potentials. The solutions of their respective partners H+ can be obtained
by applying the transformation ψ

(+)
n (x) = ρ−1 φ

(+)
n (x), where φ

(+)
n are the solutions of the

supersymmetric partner Hamiltonian h+. In the expression for ψ
(−)
n , the different parameters

stand for µ1 = α1µ = α1
α−β

1−α−β
, µ2 = b1

a1
µ = b1(α−β)

a1(1−α−β)

Model y s± ψ
(−)
n

Rosen–Morse I i cot x −a1 − n ± i b1
a1+n

e
(

b1
a1+n −µ1)x

sina1+n+µ2 xP
(s+,s−)
n (y)

Rosen–Morse II tanh x a1 − n ± b1
a1−n

(1 − y)
s+−µ1

2 (1 + y)
s−−µ1

2 eµ2xP
(s+,s−)
n (y)

Eckart coth x ± b1
a1+n

− n − a1 (y − 1)
s++µ1

2 (y + 1)
s−+µ1

2 eµ2xP
(s+,s−)
n (y)

The potentials falling in this category are listed below. In each case the form of w(x) is similar
to that of W(x), with a2 and b2 being replaced by a1 and b1. The unknown parameters a1

and b1 are obtained in terms of the known ones a2 and b2 from expressions (48), (49) and
(50). It can be shown that the eigen energies of the positive and the negative sector are related
through

E(+)
n = E

(−)
n+1, with E(±) = (1 − α − β)ε(±), n = 0, 1, 2, . . . (54)

The partner potentials V±(x) are given in table 1 while the (unnormalized) solutions of the
original Hamiltonian H− are given in table 2. The solutions of its partner H+ can be obtained
by applying the transformation

ψ(+)
n (x) = ρ−1φ(+)

n (x) (55)
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where φ(+)
n are the solutions of the supersymmetric partner Hamiltonian h+. In the expression

for ψ(−)
n , the different parameters stand for

µ1 = a1µ = a1
α − β

1 − α − β
, µ2 = b1

a1
µ = b1(α − β)

a1(1 − α − β)
(56)

It is evident from the explicit expressions for ψ(−)
n (x) that for its well-defined behaviour, α

and β must obey additional constraints; e.g., for the Rosen–Morse II and Eckart models,

α < β (57)

while the Rosen–Morse I model requires

a1 + n + µ2 > 0,
b1

a1 + n
< µ1 (58)

which, in turn, implies

α > β (59)

4.2. Case 2: f 2(x) = c1 + c2g
2(x), f ′(x) = c3g

2(x), g′(x) = c4f (x)g(x) with c1, c2, c3, c4

constants

The models falling in this category are based on the:

(1) Scarf I (trigonometric) potential

V (x) = k1 tan2 x − k2 sec x tan x, −π

2
� x � π

2
(60)

with W(x) = λ2 tan x − δ2 sec x (61)

(2) Scarf II (hyperbolic) potential

V (x) = k1 sech2 x + k2 sech x tanh x, −∞ � x � ∞ (62)

with W(x) = λ2 tanh x + δ2 sech x (63)

(3) Pöschl–Teller potential

V (x) = k1 cosech2 x − k2 coth x cosech x, 0 � x � ∞ (64)

with W(x) = λ2 tanh x − δ2 cosech x, λ2 < δ2 (65)

Thus (39) gets simplified to

λ2
1c1 +

(
λ2

1c2 + δ2
1 − λ1c3

)
g2(x) + (2λ1δ1 − δ1c4) f (x)g(x) + λ2

1c1

=
[

(1 − 4αβ)

(1 − α − β)2

(
λ2

2c2 + δ2
2

) − λ2c3

1 − α − β)

]
g2(x) +

λ2
2c1(1 − 4αβ)

(1 − α − β)2
(66)

+

[
2λ2δ2

1 − 4αβ

(1 − α − β)2
− δ2c4

1 − α − β

]
f (x)g(x) (66)

Equating like terms on both sides, the unknown parameters λ1, δ1 are obtained by solving the
following two coupled equations simultaneously:

δ2
1 + λ2

1c2 − λ1c3 = (
λ2

2c2 + δ2
2

) (1 − 4αβ)

(1 − α − β)2
− λ2c3

1 − α − β
(67)

2λ1δ1 − δ1c4 = 2λ2δ2
1 − 4αβ

(1 − α − β)2
− δ2c4

1 − α − β
(68)

Once again, the pseudo supersymmetric partner Hamiltonians H±, given by (52), have
identical energies except for the ground state, with V±(x) for this class of potentials assuming

10
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Table 3. The partner potentials V±(x) for the Scarf I and II, and the Pöschl–Teller potentials. ε
(±)
n

is the same as that defined in table 1.

Model f (x) g(x) V±(x) ε
(−)
n

Scarf I −λ2
2

1−4αβ

(1−α−β)2 − λ2
1 −λ2

2
1−4αβ

(1−α−β)2

c1 = −1, c2 = 1 tan x −sec x +
(
δ2

1 + λ2
1 ± λ1

)
sec2 x −λ2

1 + (λ1 + n)2

c3 = 1, c4 = 1 −δ1 (2λ1 ± 1) sec x tan x n = 0, 1, 2, . . .

Scarf II λ2
2

1−4αβ

(1−α−β)2 + λ2
1 λ2

2
1−4αβ

(1−α−β)2

c1 = 1, c2 = −1 tanh x sechx +
(
δ2

1 − λ2
1 ± λ1

)
sech2x +λ2

1 − (λ1 − n)2

c3 = 1, c4 = −1 +δ1(2λ1 ∓ 1)sechx tanh x n = 0, 1, 2, . . . < λ1

Pöschl–Teller λ2
2

1−4αβ

(1−α−β)2 + λ2
1 λ2

2
1−4αβ

(1−α−β)2

c1 = 1, c2 = 1 coth x −cschx +(δ2
1 + λ2

1 ± λ1)csch2x +λ2
1 − (λ1 − n)2

c3 = −1, c4 = −1 −δ1(2λ1 ∓ 1)cschx coth x n = 0, 1, 2, . . . < λ1

Table 4. The (unnormalized) solutions of the original Hamiltonian H−, for the Scarf I and II,
and the Pöschl–Teller potentials, with µ1 = λ2µ, µ2 = δ2µ. The solutions of their respective
partners H+ can be obtained in the same way as given in table 2.

Model y s± ψ
(−)
n

Scarf I sin x λ1 ± δ1 − 1
2 (sec x + tan x)−µ2 (1 − y)

λ1−δ1−µ1
2 (1 + y)

λ1+δ1−µ1
2 P

(s−,s+)
n (y)

Scarf II sinh x ±iδ1 − λ1 − 1
2 (1 + y2)

µ1−λ1
2 e(µ2−δ1)tan−1yP

(s+,s−)
n (y)

Pöschl–Teller cosh x ±δ1 − λ1 − 1
2 (y − 1)

δ1−λ1+µ1
2 (y + 1)

−δ1−λ1+µ1
2 eµ2xP

(s+,s−)
n (y)

the form

V±(x) = λ2
1c1 +

(
λ2

1c2 + δ2
1 ± λ1c3

)
g2(x) + (2λ1δ1 ± δ1c4) f (x)g(x) + λ2

2c1
1 − 4αβ

(1 − α − β)2

(69)

In each of the cases of the three different models in this category, the form of w(x) is similar
to that of W(x), with λ2 and δ2 being replaced by λ1 and δ1. The unknown parameters λ1 and
δ1 are obtained in terms of the known ones λ2 and δ2 from expressions (48), (49) and (50).
The pseudo supersymmetric partner Hamiltonians of the form given in (52), have energies
E(±), related to ε(±) through (54). The partner potentials V±(x) are given in table 3 while the
solutions are given in table 4, with

µ1 = λ2µ, µ2 = δ2µ (70)

From the explicit expressions for the solutions, it is evident that well defined behaviour is
assured only when the parameters satisfy additional constraints. For example, for the Pöschl–
Teller model, this condition reduces to

µ2 < 0 i.e. α < β

4.3. Case 3: g(x) = 1, and f ′(x) = kf (x), with k = −1

The Morse potential, given by

V (x) = a2
1 + b2

1 exp(−2x) − b1(2a1 + 1) exp(−x), −∞ � x � ∞ (71)

11
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belongs to this class of potentials, with

W(x) = a2 − b2 exp(−x) (72)

Thus, for this particular model, λ2 = −b2, δ2 = a2, with f (x) = exp(−x), so that equation
(39) reduces to

b1 = b2

√
1 − 4αβ

1 − α − β
(73)

a1 = 1

2b1

{
b2

(1 − α − β)2
[2a2 (1 − 4αβ) + (1 + α + β)] − b1

}
(74)

Thus

V±(x) = a2
1 + b2

1 exp(−2x) − b1 (2a1 ∓ 1) exp(−x) + a2
2

1 − 4αβ

(1 − α − β)2 (75)

admit energies

ε(−)
n = a2

1 − (a1 − n)2 + a2
2

1 − 4αβ

(1 − α − β)2 , n = 0, 1, 2, . . . < a1

ε(+)
n = ε

(−)
n+1

(76)

The solutions of the original non Hermitian Hamiltonian H− are given by

ψ(−)
n (x) ≈ yλ1−µ1−n e(

µ2
δ1

−1)
y

2 L2λ1−2n
n (y) (77)

where µ1 and µ2 are defined in equation (70) and

y = 2δ1 e−x (78)

4.4. Case 4: g(x) = 1, and f (x) = x

These values represent the Shifted Oscillator, denoted by the potential

V (x) = a2

4

(
x − 2b

a

)2

− a

2
, ∞ � x � ∞ (79)

with

W(x) = 1
2a2x − b2 (80)

Proceeding in a similar fashion, and assuming w(x) to be of the same form as W(x), with
a2, b2 replaced by a1, b1, we obtain the following results:

a1 = a2
√

1 − 4αβ

1 − α − β
, b1 = b2

√
1 − 4αβ

1 − α − β
(81)

so that

V±(x) = 1

4
a2

1

(
x − 2b1

a1

)2

± a1

2
− a2

2 (1 − α − β)
(82)

with energy

ε(−)
n = a1n − a2

2 (1 − α − β)
, n = 0, 1, 2, . . .

ε(+)
n = ε

(−)
n+1

(83)

Writing the solutions of H− directly

ψ(−)
n (x) ≈ e(µ1−a1)

x2

4 +(µ2−b1)xHn(y) (84)
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where Hn(y) are the Hermite polynomials, y =
√

a1
2

(
x − 2b1

a1

)
and µ1 = µa2, µ2 = µb2. It

can be checked that for the solutions to behave properly in the entire interval, the parameters
should obey the condition |α + β| < 1.

5. Conclusions

To conclude, we have developed a formalism to find an isospectral partner Hamiltonian H+

of the generalized Swanson model, viz., H− = A†A + αA2 + βA†2. Though both the initial
Hamiltonian H− as well as its partner H+ are non Hermitian, nevertheless they have real
energies for certain range of parameter values. It is observed that H± form a pair of pseudo
super symmetric partners of a pseudo super HamiltonianH, and share identical energies except
for the ground state. Furthermore, the same similarity transformation operator ρ maps the pair
of non Hermitian Hamiltonians H± to their respective Hermitian counterparts h±, through
H± = ρ−1h±ρ, and these Hermitian maps form a pair of supersymmetric partners, generated
by supercharges q, q†. The pseudo super charges Q,Q	 generating the pseudo super algebra
of H are also related to q, q† through the similarity transformation: Q = ρ−1qρ.

Since we have introduced non Hermiticity through an imaginary vector potential,
the Hermitian maps h± obtained by similarity transformation are Schrödinger operators
comprising of the standard kinetic term plus a local real Hermitian potential. It may be
mentioned here that though two Hamiltonians may be related by similarity transformations,
yet they can reveal different physical aspects of the dynamical system. In fact, for a particular
class of potentials, certain physical properties are expected to emerge more distinctly in the
non Hermitian framework. For example, exceptional points, or branch-point singularities
of the spectrum and eigenfunctions, are associated with non Hermitian operators [17].
However, when one goes from the non Hermitian to the corresponding Hermitian picture, the
exceptional points are lost, and consequently the entire information related to such phenomena.
Additionally, though the super symmetric partners h± of a Hermitian Hamiltonian can always
be mapped to non Hermitian ones (say H±) by a similarity transformation, there is absolutely
no way to determine whether H± are isospectral or not. This is due to the fact that to write
the pseudo Hermitian partner Hamiltonian H+ in terms of the generalized annihilation and
creation operators A and A† is still an open problem. As a result, while h± look similar in
appearance (being expressed in terms of the creation and annihilation operators A† and A), H±
are not look-alikes. Nevertheless, we have been able to express H± in terms of the operators
D±, thus proving them to be related by pseudo super symmetry, sharing identical energies,
barring the ground state.

We have applied our formalism successfully to all the known classes of shape-invariant
models where the parameters of the original potential and its shape-invariant partner are related
through translation. A general formula has been obtained for generating the respective pseudo
supersymmetric partner Hamiltonians for such cases. Interestingly, the wave functions are
automatically normalized following the normalization criterion for pseudo Hermitian systems
[13]. We have intentionally left out the 3-dimensional shape-invariant models falling in this
category, viz. 3-dimensional oscillator and Coulomb models, as we have restricted this work
to deal with one-dimensional systems only. However, the radial part of these models can be
studied in this framework, with 0 � r � ∞.

This work deals with real Hamiltonians that are nevertheless non Hermitian. We can make
a straightforward extension of our formalism to map a complex non Hermitian Hamiltonian
H to a Schrödinger Hamiltonian which is also complex but PT symmetric. However, in such
a case H will be weakly pseudo Hermitian [18]. Finally we would like to note that in this
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work we have studied shape-invariant models with unbroken supersymmetry. It would be
interesting to study models with broken supersymmetry, too, in this framework.
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